11 research outputs found

    Inductive Graph Neural Networks for Spatiotemporal Kriging

    Full text link
    Time series forecasting and spatiotemporal kriging are the two most important tasks in spatiotemporal data analysis. Recent research on graph neural networks has made substantial progress in time series forecasting, while little attention has been paid to the kriging problem -- recovering signals for unsampled locations/sensors. Most existing scalable kriging methods (e.g., matrix/tensor completion) are transductive, and thus full retraining is required when we have a new sensor to interpolate. In this paper, we develop an Inductive Graph Neural Network Kriging (IGNNK) model to recover data for unsampled sensors on a network/graph structure. To generalize the effect of distance and reachability, we generate random subgraphs as samples and reconstruct the corresponding adjacency matrix for each sample. By reconstructing all signals on each sample subgraph, IGNNK can effectively learn the spatial message passing mechanism. Empirical results on several real-world spatiotemporal datasets demonstrate the effectiveness of our model. In addition, we also find that the learned model can be successfully transferred to the same type of kriging tasks on an unseen dataset. Our results show that: 1) GNN is an efficient and effective tool for spatial kriging; 2) inductive GNNs can be trained using dynamic adjacency matrices; 3) a trained model can be transferred to new graph structures and 4) IGNNK can be used to generate virtual sensors.Comment: AAAI 202

    Fairness-enhancing deep learning for ride-hailing demand prediction

    Full text link
    Short-term demand forecasting for on-demand ride-hailing services is one of the fundamental issues in intelligent transportation systems. However, previous travel demand forecasting research predominantly focused on improving prediction accuracy, ignoring fairness issues such as systematic underestimations of travel demand in disadvantaged neighborhoods. This study investigates how to measure, evaluate, and enhance prediction fairness between disadvantaged and privileged communities in spatial-temporal demand forecasting of ride-hailing services. A two-pronged approach is taken to reduce the demand prediction bias. First, we develop a novel deep learning model architecture, named socially aware neural network (SA-Net), to integrate the socio-demographics and ridership information for fair demand prediction through an innovative socially-aware convolution operation. Second, we propose a bias-mitigation regularization method to mitigate the mean percentage prediction error gap between different groups. The experimental results, validated on the real-world Chicago Transportation Network Company (TNC) data, show that the de-biasing SA-Net can achieve better predictive performance in both prediction accuracy and fairness. Specifically, the SA-Net improves prediction accuracy for both the disadvantaged and privileged groups compared with the state-of-the-art models. When coupled with the bias mitigation regularization method, the de-biasing SA-Net effectively bridges the mean percentage prediction error gap between the disadvantaged and privileged groups, and also protects the disadvantaged regions against systematic underestimation of TNC demand. Our proposed de-biasing method can be adopted in many existing short-term travel demand estimation models, and can be utilized for various other spatial-temporal prediction tasks such as crime incidents predictions

    Uncertainty Quantification in the Road-Level Traffic Risk Prediction by Spatial-Temporal Zero-Inflated Negative Binomial Graph Neural Network(STZINB-GNN) (Short Paper)

    Get PDF
    Urban road-based risk prediction is a crucial yet challenging aspect of research in transportation safety. While most existing studies emphasize accurate prediction, they often overlook the importance of model uncertainty. In this paper, we introduce a novel Spatial-Temporal Zero-Inflated Negative Binomial Graph Neural Network (STZINB-GNN) for road-level traffic risk prediction, with a focus on uncertainty quantification. Our case study, conducted in the Lambeth borough of London, UK, demonstrates the superior performance of our approach in comparison to existing methods. Although the negative binomial distribution may not be the most suitable choice for handling real, non-binary risk levels, our work lays a solid foundation for future research exploring alternative distribution models or techniques. Ultimately, the STZINB-GNN contributes to enhanced transportation safety and data-driven decision-making in urban planning by providing a more accurate and reliable framework for road-level traffic risk prediction and uncertainty quantification

    Spatiotemporal Graph Neural Networks with Uncertainty Quantification for Traffic Incident Risk Prediction

    Full text link
    Predicting traffic incident risks at granular spatiotemporal levels is challenging. The datasets predominantly feature zero values, indicating no incidents, with sporadic high-risk values for severe incidents. Notably, a majority of current models, especially deep learning methods, focus solely on estimating risk values, overlooking the uncertainties arising from the inherently unpredictable nature of incidents. To tackle this challenge, we introduce the Spatiotemporal Zero-Inflated Tweedie Graph Neural Networks (STZITD-GNNs). Our model merges the reliability of traditional statistical models with the flexibility of graph neural networks, aiming to precisely quantify uncertainties associated with road-level traffic incident risks. This model strategically employs a compound model from the Tweedie family, as a Poisson distribution to model risk frequency and a Gamma distribution to account for incident severity. Furthermore, a zero-inflated component helps to identify the non-incident risk scenarios. As a result, the STZITD-GNNs effectively capture the dataset's skewed distribution, placing emphasis on infrequent but impactful severe incidents. Empirical tests using real-world traffic data from London, UK, demonstrate that our model excels beyond current benchmarks. The forte of STZITD-GNN resides not only in its accuracy but also in its adeptness at curtailing uncertainties, delivering robust predictions over short (7 days) and extended (14 days) timeframes

    Uncertainty Quantification via Spatial-Temporal Tweedie Model for Zero-inflated and Long-tail Travel Demand Prediction

    Get PDF
    Understanding Origin-Destination (O-D) travel demand is crucial for transportation management. However, traditional spatialtemporal deep learning models grapple with addressing the sparse and long-tail characteristics in high-resolution O-D matrices and quantifying prediction uncertainty. This dilemma arises from the numerous zeros and over-dispersed demand patterns within these matrices, which challenge the Gaussian assumption inherent to deterministic deep learning models. To address these challenges, we propose a novel approach: the Spatial-Temporal Tweedie Graph Neural Network (STTD). The STTD introduces the Tweedie distribution as a compelling alternative to the traditional ’zero-inflated’ model and leverages spatial and temporal embeddings to parameterize travel demand distributions. Our evaluations using realworld datasets highlight STTD’s superiority in providing accurate predictions and precise confidence intervals, particularly in highresolution scenarios. GitHub code is available online

    From compound word to metropolitan station: Semantic similarity analysis using smart card data

    No full text
    Rapid urbanization and modern civilization require sound integration with public transportation systems. In the same time, the volume and complexity of public transportation network are increasing, making it harder to understand the public transportation dynamics. As a first step, understanding the similarity among subway stations is imperative. In this paper, we proposed a semantic framework inspired from natural language processing (NLP) to interpret subway stations as compound words. Specifically, we transplanted context and literal meaning of compound words into mobility and location attributes of stations. Using smart card data, we trained stacked autoencoders (SAE) with designed flow matrices as an embedding method to learn the mobility attributes. Subsequently, to discover the location attributes, we have applied affinity propagation clustering to classify 9 point of interest (POI) categories. Combined with urban planning knowledge, we manage to comprehend the land use meanings of 9 POI clusters. The location semantics is chosen from those categories reflecting its urban land use pattern. By choose meaningful combination of mobility and location semantics for stations’ similarity case studies, we summarized potential applications of this semantic framework

    ST-GIN: An Uncertainty Quantification Approach in Traffic Data Imputation with Spatio-temporal Graph Attention and Bidirectional Recurrent United Neural Networks

    Full text link
    Traffic data serves as a fundamental component in both research and applications within intelligent transportation systems. However, real-world transportation data, collected from loop detectors or similar sources, often contain missing values (MVs), which can adversely impact associated applications and research. Instead of discarding this incomplete data, researchers have sought to recover these missing values through numerical statistics, tensor decomposition, and deep learning techniques. In this paper, we propose an innovative deep-learning approach for imputing missing data. A graph attention architecture is employed to capture the spatial correlations present in traffic data, while a bidirectional neural network is utilized to learn temporal information. Experimental results indicate that our proposed method outperforms all other benchmark techniques, thus demonstrating its effectiveness.Comment: In submission to IEEE-ITSC 202

    The Braess Paradox in Dynamic Traffic

    Full text link
    The Braess's Paradox (BP) is the observation that adding one or more roads to the existing road network will counter-intuitively increase traffic congestion and slow down the overall traffic flow. Previously, the existence of the BP is modeled using the static traffic assignment model, which solves for the user equilibrium subject to network flow conservation to find the equilibrium state and distributes all vehicles instantaneously. Such approach neglects the dynamic nature of real-world traffic, including vehicle behaviors and the interaction between vehicles and the infrastructure. As such, this article proposes a dynamic traffic network model and empirically validates the existence of the BP under dynamic traffic. In particular, we use microsimulation environment to study the impacts of an added path on a grid network. We explore how the network flow, vehicle travel time, and network capacity respond, as well as when the BP will occur.Comment: Accepted by 2022 IEEE Intelligent Transportation Systems Conference (ITSC): https://ieeexplore.ieee.org/abstract/document/992199
    corecore